

Journal of Organometallic Chemistry 642 (2002) 9-15

www.elsevier.com/locate/jorganchem

Carbonyl abstraction reactions of Cp*Mo(PMe₃)₃H with CO₂, (CH₂O)_n, HCO₂H, and MeOH: the synthesis of Cp*Mo(PMe₃)₂(CO)H and the catalytic decarboxylation of formic acid

Jun Ho Shin, David G. Churchill, Gerard Parkin *

Department of Chemistry, Columbia University, Havemeyer Hall, Box 866, mail code 3115, New York, NY 10027, USA

Received 27 March 2001; received in revised form 2 August 2001; accepted 15 August 2001

Abstract

Cp*Mo(PMe₃)₃H undergoes carbonyl abstraction reactions with a variety of reagents, including CO₂, (CH₂O)_n, HCO₂H, and MeOH to yield Cp*Mo(PMe₃)₂(CO)H. The reaction between Cp*Mo(PMe₃)₃H and HCO₂H has been studied by ¹H-NMR spectroscopy, which indicates that the initial interaction involves protonation of the molybdenum center to give [Cp*Mo(PMe₃)₃H₂][HCO₂]; upon heating to 80 °C, however, [Cp*Mo(PMe₃)₃H₂][HCO₂] is converted to the carbonyl complex Cp*Mo(PMe₃)₂(CO)H. In the presence of excess HCO₂H, Cp*Mo(PMe₃)₂(CO)H reacts further to yield Cp*Mo(PMe₃)₂(CO)(η¹-O₂CH); the latter complex undergoes decarboxylation at 80 °C and regenerates Cp*Mo(PMe₃)₂(CO)H. Thus, Cp*Mo(PMe₃)₂(CO)H serves as a catalyst for the decomposition of HCO₂H to CO₂ and H₂. Although the formate complex Cp*Mo(PMe₃)₂(CO)(η¹-O₂CH) has not been isolated, the molecular structure of the acetate derivative Cp*Mo(PMe₃)₂(CO)(η¹-O₂CMe) has been determined by X-ray diffraction. © 2002 Published by Elsevier Science B.V.

Keywords: Synthesis; Carbonyl abstraction; Catalytic decarboxylation

1. Introduction

We have previously reported the pentamethylcyclopentadienyl molybdenum trimethylphosphine complexes $Cp*Mo(PMe_3)H_5$, $Cp*Mo(PMe_3)_2H_3$, and Cp*Mo(PMe₃)₃H, together with their use to prepare dinuclear complexes that contain sulfur bridges, e.g. $[Cp*Mo(\mu-SMe)_2]_2$ and $[Cp*Mo(\mu-S)(\mu-SH)]_2$ [1]. In this paper, we describe further studies on Cp*Mo(PMe₃)₃H that highlight its ability to abstract CO from a variety of substrates to form Cp*Mo(PMe₃)₂(CO)H, a catalyst for decarboxylation of formic acid.

2. Results and discussion

Cp*Mo(PMe₃)₃H reacts readily with CO at 80 °C to vield the carbonyl complex Cp*Mo(PMe₂)₂(CO)H (Scheme 1). The clean synthesis of $Cp*Mo(PMe_3)_2(CO)H$ is notable in the sense that Cp*Mo(PMe₃)₂(CO)H has been previously described in the literature, but was not obtained in pure form. Specifically, Cp*Mo(PMe₃)₂(CO)H was generated as a mixture with Cp*Mo(PMe₃)(CO)₂H upon reaction of: (i) $[Cp*Mo(CO)_3(PMe_3)]^+$ with LiAlH₄; and (ii) $[Cp*Mo(CO)_4]^+$ with LiAlH₄ in the presence of PMe₃ [2]. It is also important to note that the data reported previously for Cp*Mo(PMe₃)₂(CO)H differ in some significant ways from those reported here. For example: (i) the ³¹P-NMR spectroscopic signal was reported as 19.6 ppm [2], rather than 29.8 ppm; and (ii) the 13 C-NMR spectroscopic signal for the carbonyl group was reported as 275.0 ppm [2], rather than 253.3 ppm [3]. Additional characterization for the Cp*Mo-

^{*} Corresponding author. Tel.: +1-212-8548247; fax: +1-212-9321289.

E-mail address: parkin@chem.columbia.edu (G. Parkin).

Scheme 3.

 $(PMe_3)_2(CO)H$ as synthesized by reaction of $Cp^*Mo(PMe_3)_3H$ with CO is provided by the formation of the iodide derivative $Cp^*Mo(PMe_3)_2(CO)I$ upon reaction with MeI (Scheme 1).

Of more interest than forming Cp*Mo(PMe₃)₂(CO)H by displacement of PMe₃ with CO, Cp*Mo(PMe₃)₂-(CO)H is also obtained upon reaction of Cp*Mo(PMe₃)₃H with a variety of other reagents, including, CO₂, paraformaldehyde, MeOH, and HCO₂H (Scheme 1). For the reaction between Cp*Mo(PMe₃)₃H and CO₂, ¹H-NMR spectroscopy demonstrates that the formation of Cp*Mo(PMe₃)₂(CO)H is accompanied by the generation of Me₃PO, which helps provide the driving force for the reaction. The formation of a carbonyl complex upon reaction with CO₂ is precedented. For example, the reaction of Re(PMe₃)₅H with CO_2 yields the carbonyl complex $Re(PMe_3)_4(CO)(\eta^{1}-$ O₂CH), and the reactions of a variety of metal halides with Na in PMe₃ solvent under a CO₂ atmosphere yield carbonyl complexes, e.g. cis-Cr(PMe₃)₄(CO)₂, Mo-(PMe₃)₅(CO), W(PMe₃)₅(CO), and trans-Fe(PMe₃)₄- $(CO)_2$ [4]. Furthermore, η^2 -CO₂ complexes are known to decompose to carbonyl derivatives. For example, $Ni(PCy_3)_2(CO_2)$ decomposes to $Ni(PCy_3)_2(CO)_2$, while $Fe(PMe_3)_4(CO_2)$ decomposes to $Fe(PMe_3)_3(CO)(CO_3)$ [5].

It is also worth noting that the formation of a carbonyl complex from CO_2 is the reverse of a common reaction that is typically used to displace CO from a metal center. Specifically, reaction of a metal carbonyl complex with R₃NO is a common means of effecting displacement of a carbonyl ligand as CO₂ [6]. It is therefore, postulated that the reaction between Cp*Mo(PMe₃)₃H and CO₂ involves initial displacement of PMe₃ and generation of a CO₂ adduct, $Cp*Mo(PMe_3)_2(\eta^2-CO_2)H$, which undergoes an oxygen atom abstraction with the liberated PMe₃ to yield the carbonyl complex Cp*Mo(PMe₃)₂(CO)H (Scheme 2). The ability of PMe₃ to promote deoxygenation of CO_2 and form a metal carbonyl complex, whereas R₃NO effects the opposite reaction, is presumably a consequence of a stronger phosphine-oxide versus amineoxide bond [7].

The reaction of Cp*Mo(PMe₃)₃H with MeOH to generate, inter alia, Cp*Mo(PMe₃)₂(CO)H is postulated to occur via a sequence involving: (i) formation of a methoxide derivative; (ii) dehydrogenation to a formaldehyde complex; (iii) conversion to a formyl-hydride derivative; (iv) reductive-elimination of H₂; and (v) α -H elimination (Scheme 3). The transformation comprises steps that are, in essence, the reverse of those required for the metal catalyzed hydrogenation of carbon monoxide and the formation of oxygenates in the Fischer–Tropsch synthesis reaction [8]. An exemplary illustration of dehydrogenation of a formaldehyde ligand [9] to a carbonyl ligand is provided by the reaction of

W(PMe₃)₄(η^2 -OCH₂)H₂ with a hydrogen acceptor (e.g. propene) to give W(PMe₃)₄(CO)H₂ [10–12]. Furthermore, an example of α -H elimination of a formyl compound is provided by the facile conversion of Cp*Mo(PPh₃)(CO)₂(CHO) to Cp*Mo(PPh₃)(CO)₂H at -40 °C [13,14]. The formaldehyde and formyl complexes are also postulated intermediates in the formation of Cp*Mo(PMe₃)₂(CO)H upon reaction of Cp*Mo(PMe₃)₃H with paraformaldehyde (Scheme 3).

The reaction between Cp*Mo(PMe₃)₃H and HCO₂H has been studied by ¹H-NMR spectroscopy, which indicates that the initial interaction involves protonation of the molybdenum center to give [Cp*Mo(PMe₃)₃-H₂][HCO₂] (Scheme 4). The presence of two hydride ligands in [Cp*Mo(PMe₃)₃H₂]⁺ is confirmed by the observation of a triplet ($J_{P-H} = 49$ Hz) in the ³¹P{¹H-Me} selectively decoupled NMR spectrum.

Precedent for the formation of $[Cp*Mo(PMe_3)_3H_2]^+$ is provided by the observation that the analogous complexes [CpMo(PMe₃)₃H₂][BF₄] [15] and [CpW(PMe₃)₃-H₂[BF₄] [16] have been obtained by reactions of $CpM(PMe_3)_3H$ (M = Mo, W) with HBF₄. Upon heating to 80 °C, however, [Cp*Mo(PMe₃)₃H₂][HCO₂] is converted to the carbonyl complex Cp*Mo(PMe₃)₂-(CO)H, accompanied by elimination of H₂ and Me₃PO. The reaction is proposed to occur via reductive elimination of H₂, followed by coordination of formate, to vield Cp*Mo(PMe₃)₃(η¹-O₂CH). Subsequent dissociation of PMe₃ and β-hydrogen elimination would generate the CO₂ complex Cp*Mo(PMe₃)₂(η^2 -CO₂)H (Scheme 4). As suggested above, oxygen abstraction from the coordinated CO₂ by PMe₃ would generate Cp*Mo(PMe₃)₂(CO)H and Me₃PO.

Although Cp*Mo(PMe₃)₂(CO)H is obtained by reaction of Cp*Mo(PMe₃)₃H with one equivalent of HCO₂H, Cp*Mo(PMe₃)₂(CO)H reacts further with HCO₂H to generate an orange species that has been characterized by ¹H-NMR spectroscopy and mass spectrometry as Cp*Mo(PMe₃)₂(CO)(η^{1} -O₂CH). However, upon heating to 80 °C, Cp*Mo(PMe₃)₂(CO)(η^{1} -O₂CH) undergoes decarboxylation and regenerates Cp*Mo-(PMe₃)₂(CO)H [17]. Thus, Cp*Mo(PMe₃)₂(CO)H serves as a catalyst for the decomposition of HCO₂H to CO₂ and H₂. The catalytic decomposition of formic acid is the reverse of the commercially more important reduction of CO₂ to formic acid, which has been widely studied [18,19].

A proposed, simplified, catalytic cycle for the $Cp*Mo(PMe_3)_2(CO)H$ mediated decarboxylation of formic acid is illustrated in Scheme 5. In this regard, it is worth noting that the iodide analogue Cp*Mo-

Fig. 1. Molecular Structure of $Cp*Mo(PMe_3)_2(CO)(\eta^1-O_2CMe)$. Selected bond lengths (Å) and angles (°): Mo–C(1) 1.874(9), Mo–O(2) 2.167(4), Mo–P(1) 2.462(2), Mo–P(2) 2.454(2), C(1)–O(1) 1.200(9), C(2)–O(2) 1.277(8), C(2)–O(3) 1.212(8), C(2)–C(3) 1.504(11); C(1)–Mo–O(2)136.2(2), C(1)–Mo–P(1) 75.6(3), C(1)–Mo–P(2) 75.7(2), P(1)–Mo–P(2) 113.9(1), O(2)–Mo–P(1) 80.4(1), O(2)–Mo–P(2) 81.4(1), Mo–O(2)–C(2) 138.6(5).

(PMe₃)₂(CO)I is ineffective as a catalyst for the decomposition of HCO₂H, thereby clearly indicating the important role that the hydride ligand plays in the Support for the formation of catalytic cycle. $Cp*Mo(PMe_3)_2(CO)(\eta^1-O_2CH)$ is provided by the observation that Cp*Mo(PMe₃)₂(CO)H reacts with MeCO₂H and EtCO₂H to give Cp*Mo(PMe₃)₂-(CO)(η^1 -O₂CMe) and Cp*Mo(PMe₃)₂(CO)(η^1 -O₂CEt), respectively, and Cp*Mo(PMe₃)₂(CO)(η^1 -O₂CMe) has been structurally characterized by X-ray diffraction (Fig. 1). In contrast to $Cp*Mo(PMe_3)_2(CO)(\eta^1-O_2CH)$, however, $Cp^*Mo(PMe_3)_2(CO)(\eta^1-O_2CMe)$ and $Cp^* Mo(PMe_3)_2(CO)(\eta^1-O_2CEt)$ are stable towards elimination of CO_2 because β -alkyl elimination is generally less favored than β -hydrogen elimination [20,21].

3. Experimental

3.1. General considerations

All manipulations were performed using a combination of glovebox, high-vacuum or Schlenk techniques [22]. Solvents were purified and degassed by standard procedures and all commercially available reagents were used as received, unless otherwise noted in the experimental procedures. IR spectra were recorded as KBr pellets or neat samples on Perkin-Elmer 1430 or 1600 spectrophotometers and are reported in cm^{-1} . Mass spectra were obtained on a Nermag R10-10 mass spectrometer using chemical ionization (CH₄) techniques. Elemental analyses were measured using a Perkin-Elmer 2400 CHN Elemental Analyzer. ¹H-NMR spectra were recorded on Varian VXR-200 (200.057 MHz), VXR-300 (299.943 MHz), and VXR-400 (399.95 MHz) spectrometers. ¹³C- and ³¹P-NMR spectra were recorded on a Varian VXR-300 spectrometer. ¹H and ¹³C chemical shifts are reported in ppm relative to SiMe₄ ($\delta = 0$) and were referenced internally with respect to the protio solvent impurity ($\delta = 7.15$ for C_6D_5H and $\delta = 7.26$ for CHCl₃) and the ¹³C resonances $(\delta = 128.0 \text{ for } C_6 D_6 \text{ and } \delta = 77.0 \text{ for } CDCl_3)$, respectively. ³¹P-NMR chemical shifts are reported in ppm relative to 85% H_3PO_4 ($\delta = 0$) and were referenced using P(OMe)₃ ($\delta = 141.0$) as external standard. All coupling constants are reported in Hz. Cp*Mo- $(PMe_3)_3H$ was obtained by the literature method [1].

3.2. Synthesis of Cp*Mo(PMe₃)₂(CO)H

A solution of Cp*Mo(PMe₃)₃H (100 mg, 0.22 mmol) in C₆H₆ (10 ml) was treated with CO (1 atm) for 4 days at 80 °C. After this period, the volatile components were removed from the mixture, and the residue was dried in vacuo to give Cp*Mo(PMe₃)₂(CO)H as a brown solid (85 mg, 95%). Anal. Calc. for C₁₇H₃₄MoOP₂: C, 49.5; H, 8.3. Found: C, 49.3; H, 7.9%. MS: m/z = 414 [M⁺]. IR data (KBr disk, cm⁻¹): 2968 (m), 2903 (s), 1773 (vs) [ν (C≡O)], 1701 (m) [ν (Mo–H)], 1478 (w), 1422 (m), 1376 (m), 1295 (w), 1276 (m), 1027 (w), 936 (vs), 850 (w), 711 (m), 665 (m), 571 (w), 499 (w). ¹H-NMR (C₆D₆): -6.85 [t, ² J_{P-H} = 78, 1H, MoH], 1.31 [d, ² J_{P-H} = 8, 18H, 2P(CH₃)₃], 1.91 [s, 15H, C₅(CH₃)₅]. ¹³C-NMR (C₆D₆): 12.5 [q, ¹ J_{C-H} = 126, 5C, C₅(CH₃)₅], 25.0 [dq, ¹ J_{C-H} = 127, ¹ J_{C-P} = 28, 6C, 2 P(CH₃)₃], 100.6 [s, 5C, C₅(CH₃)₅], 253.3 [dt, ² J_{C-P} = 29, ² J_{C-H} = 3, 1C, CO]. ³¹P{¹H}-NMR (C₆D₆): 29.8 [s].

3.3. Synthesis of Cp*Mo(PMe₃)₂(CO)I

A solution of Cp*Mo(PMe₃)₂(CO)H (50 mg, 0.12 mmol) in C_6H_6 (10 ml) was treated with excess CH_3I (350 mg, 2.47 mmol) and stirred at room temperature (r.t.) for 2 h. After this period, the volatile components were removed from the mixture, and the residue was dried in vacuo to give Cp*Mo(PMe₃)₂(CO)I as an orange solid. Anal. Calc. for C₁₇H₃₃IMoOP₂: C, 37.9; H, 6.2. Found: C, 37.8; H, 6.1%. MS: m/z = 540 [M⁺]. IR data (KBr disk, cm⁻¹): 2965 (m), 2904 (s), 1778 (vs) [v(C=O)], 1477 (m), 1454 (m), 1421 (m), 1375 (s), 1297(m), 1274 (s), 1095 (m), 1024 (s), 944 (vs), 851 (m), 802 (m), 717 (m), 665 (m), 579 (w), 559 (w), 524 (w). ¹H-NMR (C₆D₆): 1.48 [d, ² $J_{P-H} = 8$, 18H, 2P(CH₃)₃], 1.70 [s, 15H, $C_5(CH_3)_5$]. ¹³C-NMR (C_6D_6): 12.1 [q, ${}^{1}J_{C-H} = 127, 5C, C_{5}(CH_{3})_{5}], 20.3 [dq, {}^{1}J_{C-H} = 132,$ ${}^{1}J_{C-P} = 24, \ 6C, \ 2P(CH_{3})_{3}], \ 102.1 \ [s, \ 5C, \ C_{5}(CH_{3})_{5}], \ 271.0 \ [t, \ {}^{2}J_{C-P} = 34, \ 1C, \ CO]. \ {}^{31}P\{^{1}H\}-NMR \ (C_{6}D_{6}):$ 7.2 [s].

3.4. Reaction of $Cp*Mo(PMe_3)_3H$ with CO_2

A solution of Cp*Mo(PMe₃)₃H (ca. 10 mg) in C₆D₆ (1 ml) was heated at 80 °C under CO₂. ¹H-NMR spectroscopy showed the formation of Cp*Mo(CO)-(PMe₃)₂H (ca. 70%) and Me₃PO after 1 day.

3.5. Reaction of $Cp^*Mo(PMe_3)_3H$ with $(CH_2O)_n$

A mixture of Cp*Mo(PMe₃)₃H (ca. 10 mg) and paraformaldehyde (ca. 10 mg) in C₆D₆ (1 ml) was heated at 80 °C. ¹H-NMR spectroscopy showed the formation of Cp*Mo(PMe₃)₂(CO)H (ca. 40%) inter alia. Prolonged heating resulted in subsequent reaction of Cp*Mo(PMe₃)₂(CO)H with paraformaldehyde to form an unidentified complex.

3.6. Reaction of Cp*Mo(PMe₃)₃H with MeOH

A solution of $Cp*Mo(PMe_3)_3H$ (ca. 10 mg) in C_6D_6 (1 ml) was treated with MeOH (ca. 10 mg) heated at

80 °C. ¹H-NMR spectroscopy showed the formation of $Cp*Mo(PMe_3)_2(CO)H$ (ca. 60%) as a major product over a period of 2 days.

3.7. Synthesis of [Cp*Mo(PMe₃)₃H₂][HCO₂]

A solution of Cp*Mo(PMe₃)₃H (64 mg, 0.14 mmol) in pentane (10 ml) was treated with a solution of HCO₂H (6 mg, 0.20 mmol) in pentane (5 ml). The mixture was filtered after stirring for 2 h at r.t., and the residue was washed with pentane (2 × 5 ml) and dried in vacuo to give [Cp*Mo(PMe₃)₃H₂][HCO₂] as a pale brown solid (30 mg, 43%). ¹H-NMR (C₆D₆): -4.94 [br. q, ²J_{P-H} = 49, 2H, 2MoH], 1.16 [m, 27H, 3¹P{¹H}-NMR (C₆D₆): 2.6 [s]. ³¹P{selective ¹H-Me}-NMR (C₆D₆): 2.6 [t, ²J_{P-H} = 49]. IR data (KBr disk, cm⁻¹): 1946 [v(Mo-H)], 1662 [v(C=O)].

3.8. Conversion of $[Cp^*Mo(PMe_3)_3H_2][HCO_2]$ to $Cp^*Mo(PMe_3)_2(CO)H$

A solution of $[Cp*Mo(PMe_3)_3H_2][HCO_2]$ (ca. 10 mg) in C_6D_6 (1 ml) was heated at 80 °C overnight. The reaction was monitored by ¹H-NMR spectroscopy which demonstrated the formation of $Cp*Mo(PMe_3)_2$ -(CO)H (ca. 70%), Me₃PO and H₂ after 1 day.

3.9. Reactivity of $Cp^*Mo(PMe_3)_2(CO)H$ towards HCO_2H

A solution of Cp*Mo(PMe₃)₂(CO)H (ca. 10 mg) in C_6D_6 (1 ml) was treated with HCO₂H (20 mg) at r.t. The pale yellow solution immediately changed to orange giving initially $Cp*Mo(PMe_3)_2(CO)(\eta^1-O_2CH)$, which subsequently decomposed to Cp*Mo(PMe₃)₂-(CO)H when all the HCO₂H originally present was CO_2 and H₂. ¹H-NMR converted to for $Cp*Mo(PMe_{3})_{2}(CO)(\eta^{1}-O_{2}CH)$ (C₆D₆): 1.11 [d. ${}^{2}J_{P-H} = 8, 18H, 2P(CH_{3})_{3}], 1.52 [s, 15H, C_{5}(CH_{3})_{5}], 8.61$ $[t, {}^{4}J_{P-H} = 2, 1H, O_{2}CH]. {}^{31}P{}^{1}H{}-NMR (C_{6}D_{6}): 18.3$ [s]. MS: m/z = 458 [M⁺]. The formate complex is only observed in the presence of free HCO₂H. Also, if the reaction is carried out at 80 °C, the formic acid is catalytically decomposed to CO₂ and H₂ within 1 day.

3.10. Reaction of $Cp^*Mo(PMe_3)_2(CO)H$ with $MeCO_2H$

A solution of Cp*Mo(PMe₃)₂(CO)H (ca. 10 mg) in C₆D₆ (1 ml) was treated with MeCO₂H (10 mg) at 80 °C. ¹H-NMR spectroscopy demonstrated that the quantitative formation of Cp*Mo(PMe₃)₂(CO)(η^{1} -O₂CMe) was complete within 1 day. ¹H-NMR (C₆D₆): 1.25 [d, ²J_{P-H} = 8, 18H, 2P(CH₃)₃], 1.60 [s, 15H, C₅(CH₃)₅], 2.07 [s, 3H, O₂CCH₃]. ³¹P{¹H}-NMR

(C₆D₆): 19.5 [s]. ¹³C-NMR (C₆D₆): 11.6 [q, ¹J_{C-H} = 127, 5C, C₅(CH₃)₅], 18.0 [qm, ¹J_{C-H} = 130, 6C, 2P(CH₃)₃], 26.6 [q, ¹J_{C-H} = 126, 1C, O₂CCH₃], 103.7 [s, 5C, C₅(CH₃)₅], 176.1 [t, ³J_{P-C} = 2, 1C, O₂CCH₃], CO [not located]. IR data (in pentane): 1802 [ν (C=O)], 1623 [ν (C=O)]. MS: m/z = 472 [M⁺].

3.11. Reaction of $Cp^*Mo(PMe_3)_2(CO)H$ with $EtCO_2H$

A solution of Cp*Mo(PMe₃)₂(CO)H (ca. 10 mg) in C₆D₆ (1 ml) was treated with EtCO₂H (10 mg) at 120 °C. ¹H-NMR spectroscopy demonstrated that the formation of Cp*Mo(PMe₃)₂(CO)(η^{1} -O₂CEt) as a major product (ca. 80%) was complete within 1 day. ¹H-NMR (C₆D₆): 1.22 [t, ³J_{H-H} = 7, 3H, O₂CCH₂CH₃], 1.28 [d, ²J_{P-H} = 9, 18H, 2P(CH₃)₃], 1.65 [s, 15H, C₅(CH₃)₅], 2.27 [q, ³J_{H-H} = 7, 2H, O₂CCH₂CH₃], 1.¹³C-NMR (C₆D₆): 11.7 [q, ¹J_{C-H} = 127, 5C, C₅(CH₃)₅], 11.7 [q, ¹J_{C-H} = 126, 1C, O₂CCH₂CH₃], 17.9 [qm, ¹J_{C-H} = 132, 6C, 2P(CH₃)₃], 33.1 [q, ⁻¹J_{C-H} = 125, 1C, O₂CCH₂CH₃], 103.7 [s, 5C, C₅(CH₃)₅], 180.0 [s, 1C, O₂CCH₂CH₃], CO [not located]. ³¹P{¹H}-NMR (C₆D₆): 19.3 [s]. IR data (in pentane): 1802 [*v*(C=O)], 1622 [*v*(C=O)].

3.12. X-ray structure determination of $Cp^*Mo(PMe_3)_2(CO)(\eta^{1}-O_2CMe)$

X-ray diffraction data were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector and crystal data, data collection and refinement parameters are summarized in Table 1. The structure was solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 5.03) [23]. Hydrogen atoms on carbon were included in calculated positions.

4. Summary

In conclusion, $Cp^*Mo(PMe_3)_3H$ undergoes carbonyl abstraction reactions with a variety of reagents, including CO₂, $(CH_2O)_n$, MeOH and HCO₂H to yield $Cp^*Mo(PMe_3)_2(CO)H$, which is a catalyst for the decarboxylation of HCO₂H to CO₂ and H₂.

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 166448 for compound Cp*Mo(PMe_3)_2(CO)(η^1 -O_2CMe). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 Table 1

Crystal, intensity collection and refinement data for $Cp*Mo(PMe_3)_2(CO)(\eta^1\text{-}O_2CMe)$

	$Cp*Mo(PMe_3)_2(CO)(\eta^1-O_2CMe)$
Lattice	Orthorhombic
Empirical formula	$C_{19}H_{36}O_{3}P_{2}Mo$
Formula weight	470.36
Space group	Pbca
a (Å)	14.709(1)
b (Å)	10.048(1)
c (Å)	31.672(2)
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	4680.9(6)
Ζ	8
Temperature (K)	238
Radiation (λ, \mathbf{A})	0.71073
$D_{\text{calc}} \text{ (g cm}^{-3})$	1.335
μ (Mo–K _{α}) (mm ⁻¹)	0.711
θ maximum (°)	28.3
Number of data	5468
Number of parameters	239
R_1	0.0715
wR_2	0.1556
Goodness-of-fit	1.071

1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank the US Department of Energy, Office of Basic Energy Sciences (DE-FG02-93ER14339) for support of this research. The reviewers are gratefully thanked for valuable suggestions.

References

- [1] J.H. Shin, G. Parkin, Polyhedron 13 (1994) 1489-1493.
- [2] M.-J. Tudoret, M.-L. Robo, C. Lapinte, Organometallics 11 (1992) 1419–1422.
- [3] The formula for Cp*Mo(PMe₃)₂(CO)H for which the analysis was calculated in Ref. [2] was erroneously given as $C_{15}H_{25}MoO_2P$, rather than $C_{17}H_{34}MoOP_2$.
- [4] D.L. Allen, M.L.H. Green, J.A. Bandy, J. Chem. Soc. Dalton. Trans. (1990) 541–549.
- [5] D.H. Gibson, Chem. Rev. 96 (1996) 2063-2095.
- [6] (a) H. Alper, J.T. Edward, Can. J. Chem. 48 (1970) 1543–1549;
 (b) Y. Shvo, E. Hazum, J. Chem. Soc. Chem. Commun. (1974) 336–337;
 - (c) U. Koelle, J. Organomet. Chem. 155 (1978) 53-62;
 - (d) U. Koelle, J. Organomet. Chem. 133 (1977) 53-58;
 - (e) M.O. Albers, N.J. Coville, Coord. Chem. Rev. 60 (1984) 255–276;
 - (f) J.K. Shen, Y.-C. Gao, Q.-Z. Shi, F. Basolo, Coord. Chem. Rev. 128 (1993) 69-88;
 - (g) T.Y. Luh, Coord. Chem. Rev. 60 (1984) 255-276;

(h) A.M. Kelly, G.P. Rosini, A.S. Goldman, J. Am. Chem. Soc. 119 (1997) 6115–6125.

- [7] For example, the E–O bond dissociation energies in Ph₃PO and $C_{5}H_{5}NO$ are 133 and 72 kcal mol⁻¹, respectively. See: R.H. Holm, J.P. Donahue, Polyhedron 12 (1993) 571–589.
- [8] See for example: (a) M.J. Overett, R.O. Hill, J.R. Moss, Coord. Chem. Rev. 206–207 (2000) 581–605;
 (b) M.F. D. A. (2011) 201 (2000) 210 - 214
 - (b) M.E. Dry, App. Cat. A 138 (1996) 319-344.
- [9] For a brief review of aldehyde complexes, see: Y.-H. Huang, J.Z. Gladysz, J. Chem. Edu. 65 (1988) 298–303.
- [10] M.L.H. Green, G. Parkin, J. Chem. Soc. Chem. Commun. (1986) 90–91.
- [11] Other examples of the conversion of η²-formaldehyde complexes into carbonyl derivatives are provided by the decomposition of Os(PPh₃)₂(CO)₂(η²-OCH₂) to Os(PPh₃)₂(CO)₃ via Os(PPh₃)₂(CO)₂(CHO)H (a,b) and the decomposition of Cp*Rh[P(OMe)₃](η²-OCH₂) to Cp*Rh[P(OMe)₃](CO) (c). (a) K.L. Brown, G.R. Clarke, C.E.L. Hedford, K. Marsden, W.R. Roper, J. Am. Chem. Soc. 101 (1979) 503–505;
 (b) G.R. Clarke, C.E.L. Hedford, K. Marsden, W.R. Roper, J. Organomet. Chem. 231 (1982) 335–360;
 (c) H. Werner, M. Steinmetz, K. Peters, H.G. von Schnering, Eur. J. Inorg. Chem. (1998) 1605–1617.
 [12] Of further relevance, [Co(PMe₃)₄][PF₆] reacts with formaldehyde
- [12] Of further relevance, [Co(FMe₃)₄][FF₆] feacts with formaldenyde to give the carbonyl complex [Co(CO)(PMe₃)₄][PF₆] (a). In contrast the Ir complex gives [Ir(PMe₃)₄(CHO)H]⁺ (b). (a) Y. Peres, M. Dartiguenave, Y. Dartiguenave, J.F. Britten, A.L. Beauchamp, Organometallics 9 (1990) 1041–1047;
 (b) D.L. Thorn, Organometallics 1 (1982) 197–204.
- [13] P. Leoni, E. Aquilini, M. Pasquali, F. Marchetti, M. Sabat, J. Chem. Soc. Dalton. Trans. (1988) 329–333.
- [14] For further examples of the decomposition of related formyl complexes, see: (a) D.H. Gibson, K. Owens, S.K. Mandal, W.E. Sattich, J.O. Franco, Organometallics 8 (1989) 498–505;
 (b) A. Asdark, C. Lapinte, L. Toupet, Organometallics 8 (1989) 2708–2717;
 (c) P. Leoni, A. Landi, M. Pasquali, J. Organomet. Chem. 321 (1987) 365–369.
- [15] M. Brookhart, K. Cox, F.G.N. Cloke, J.C. Green, M.L.H. Green, P.M. Hare, J. Bashkin, A.E. Derome, P.D. Grebenik, J. Chem. Soc. Dalton. Trans. (1985) 423–433.
- [16] M.L.H. Green, G. Parkin, J. Chem. Soc. Dalton. Trans. (1987) 1611–1617.
- [17] Elimination of CO₂ from formate complexes to yield a hydride derivative is precedented. For example, Re(PMe₃)₄(CO)(η^1 -O₂CH) eliminates CO₂ at 70 °C to yield Re(CO)(PMe₃)₄H; the elimination CO₂ is reversible and Re(CO)(PMe₃)₄H reacts with CO₂ to regenerate Re(PMe₃)₄(CO)(η^1 -O₂CH) (Ref. [4]). A futher recent example of CO₂ insertion into a M–H bond is provided by the reaction of *mer*-Mo(PMe₃)₃(CO)(NO)H with CO₂ to give *mer*-Mo(PMe₃)₃(CO)(NO)(η^1 -O₂CH). See: F. Liang, H. Jacobsen, H.W. Schmalle, T. Fox, H. Berke, Organometallics 19 (2000) 1950–1962.
- [18] E. Dinjus, R. Fornica, in: B. Cornils, W.A. Herrmann (Eds.), Applied Homogeneous Catalysis with Organometallic Compounds, vol. 2, 1996, pp. 1048–1072.
- [19] For recent theoretical studies on the decarboxylation of formic acid, see: B. Wang, H. Hou, Y. Gu, J. Phys. Chem. A 104 (2000) 10526–10528.
- [20] G. Parkin, E. Bunel, B.J. Burger, T.S. Trimmer, A. van Asselt, J.E. Bercaw, J. Mol. Catal. 41 (1987) 21–39.
- [21] Decarboxylation of certain carboxylates, such as M–O₂CCH₂CN and M–O₂C(CH₂)_nCO₂H (n = 1, 2), is, nevertheless known. See:
 (a) T. Tsuda, T. Nakatsuka, T. Hirayama, T. Seagusa, J. Chem. Soc. Chem. Commun. (1974) 557–558;

(b) D.J. Darensbourg, E.M. Longridge, M.W. Holtcamp, K.K. Klausmeyer, J.H. Reibenspies, J. Am. Chem. Soc. 115 (1993) 8839–8840;

(c) D.J. Darensbourg, E.M. Longridge, M.W. Holtcamp, E.V. Atnip, J.H. Reibenspies, Inorg. Chem. 30 (1991) 357–358;

(d) D.J. Darensbourg, M.W. Holtcamp, B. Khandelwal, J.H. Reibenspies, Inorg. Chem. 33 (1994) 531–537;

(e) D.J. Darensbourg, E.M. Longridge, B. Khandelwal, J.H. Reibenspies, J. Coord. Chem. 32 (1994) 27–37;

(f) D.J. Darensbourg, M.W. Holtcamp, B. Khandelwal, K.K. Klausmeyer, J.H. Reibenspies, Inorg. Chem. 34 (1995) 2389– 2398.

[22] (a) J.P. McNally, V.S. Leong, N.J. Cooper, in: A.L. Wayda,

M.Y. Darenbourg (Eds.), Experimental Organometallic Chemistry, American Chemical Society, Washington DC, 1987, pp. 6–23 Chapter 2;

(b) B.J. Burger, J.E. Bercaw, in: A.L. Wayda, M.Y. Darenbourg (Eds.), Experimental Organometallic Chemistry, American Chemical Society, Washington DC, 1987, pp. 79–98 Chapter 4;
(c) D.F. Shriver, M.A. Drezdzon, in: The Manipulation of Air-Sensitive Compounds, 2nd ed., Wiley-Interscience, New York, 1986.

[23] Sheldrick, G.M., SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures, from Diffraction Data; University of Göttingen, Göttingen, Federal Republic of Germany, 1981.